Law of Cosines and Law of Sines - Trigonometry

Card 1 of 276

0
Didn't Know
Knew It
0
1 of 2019 left
Question

If = , , and find to the nearest degree.

Tap to reveal answer

Answer

Notice that the given information is Angle-Side-Side, which is the ambiguous case. Therefore, we should test to see if there are no triangles that satisfy, one triangle that satisfies, or two triangles that satisfy this. From , we get . In this equation, if , no angle A that satisfies the triangle can be found. If , and there is a right triangle determined. Finally, if , two measures of angle B can be calculated: an acute angle B and an obtuse angle . In this case, there may be one or two triangles determined. If , then the angle B' is not a solution.

In this problem, , and there is one right triangle determined. Since we have the length of two sides of the triangle and the corresponding angle of one of the sides, we can use the Law of Sines to find the angle that we are looking for. This goes as follows:

Inputting the lengths of the triangle into this equation

Isolating

← Didn't Know|Knew It →