Arithmetic - PSAT Math
Card 1 of 4032
If a series of license plates is to be produced that all have the same pattern of three letters followed by three numbers, roughly how many alphanumeric combinations are possible?
If a series of license plates is to be produced that all have the same pattern of three letters followed by three numbers, roughly how many alphanumeric combinations are possible?
Tap to reveal answer
The total number of possible combinations of a series of items is the product of the total possibility for each of the items. Thus, for the letters, there are 26 possibilities for each of the 3 slots, and for the numbers, there are 10 possibilities for each of the 3 slots. The total number of combinations is then: 26 x 26 x 26 x 10 x 10 x 10 = 17,576,000 ≈ 18 million.
The total number of possible combinations of a series of items is the product of the total possibility for each of the items. Thus, for the letters, there are 26 possibilities for each of the 3 slots, and for the numbers, there are 10 possibilities for each of the 3 slots. The total number of combinations is then: 26 x 26 x 26 x 10 x 10 x 10 = 17,576,000 ≈ 18 million.
← Didn't Know|Knew It →
If the ratio of q to r is 3:5 and the ratio of r to s is 10:7, what is the ratio of q to s?
If the ratio of q to r is 3:5 and the ratio of r to s is 10:7, what is the ratio of q to s?
Tap to reveal answer
Multiply the ratios. (q/r)(r/s)= q/s. (3/5) * (10/7)= 6:7.
Multiply the ratios. (q/r)(r/s)= q/s. (3/5) * (10/7)= 6:7.
← Didn't Know|Knew It →
The first term in a sequence is m. If every term thereafter is 5 greater than 1/10 of the preceding term, and m≠0, what is the ratio of the second term to the first term?
The first term in a sequence is m. If every term thereafter is 5 greater than 1/10 of the preceding term, and m≠0, what is the ratio of the second term to the first term?
Tap to reveal answer
The first term is m, so the second term is m/10+5 or (m+50)/10. When we take the ratio of the second term to the first term, we get (((m+50)/10))/m, which is ((m+50)/10)(1/m), or (m+50)/10m.
The first term is m, so the second term is m/10+5 or (m+50)/10. When we take the ratio of the second term to the first term, we get (((m+50)/10))/m, which is ((m+50)/10)(1/m), or (m+50)/10m.
← Didn't Know|Knew It →
Two cars were traveling 630 miles. Car A traveled an average speed of 70 miles per hour. If car B traveled 90 miles an hour, how many miles had car A traveled when car B arrived at the destination?
Two cars were traveling 630 miles. Car A traveled an average speed of 70 miles per hour. If car B traveled 90 miles an hour, how many miles had car A traveled when car B arrived at the destination?
Tap to reveal answer
We first divide 630 miles by 90 miles per hour to get the amount of time it took car B to reach the destination, giving us 7 hours. We then multiply 7 hours by car A’s average speed and we get 490 miles.
We first divide 630 miles by 90 miles per hour to get the amount of time it took car B to reach the destination, giving us 7 hours. We then multiply 7 hours by car A’s average speed and we get 490 miles.
← Didn't Know|Knew It →
Sally bought five computers for her office that cost $300, $405, $485, $520, and $555 respectively. She made a down payment of 2/5 the total cost and paid the rest in nine equal payments over the next nine months. Assuming no tax and no interest, what is the value of each of the nine payments?
Sally bought five computers for her office that cost $300, $405, $485, $520, and $555 respectively. She made a down payment of 2/5 the total cost and paid the rest in nine equal payments over the next nine months. Assuming no tax and no interest, what is the value of each of the nine payments?
Tap to reveal answer
The total cost of the 5 computers is 2265.
2/5 of 2265 = 906, which is what Sally pays up front.
2265 – 906 = 1359, which is what Sally still owes.
1359/9 = 151, which is the value of each of the 9 equal payments.
The total cost of the 5 computers is 2265.
2/5 of 2265 = 906, which is what Sally pays up front.
2265 – 906 = 1359, which is what Sally still owes.
1359/9 = 151, which is the value of each of the 9 equal payments.
← Didn't Know|Knew It →
The price of a computer is reduced by 1/8. The new price is then reduced by 1/6. What fraction of the original price is the current price?
The price of a computer is reduced by 1/8. The new price is then reduced by 1/6. What fraction of the original price is the current price?
Tap to reveal answer
Let the original price = p.
After the first reduction, the price is (7/8)p
After the second reduction, the price is (5/6)(7/8)p = (35/48)p
Let the original price = p.
After the first reduction, the price is (7/8)p
After the second reduction, the price is (5/6)(7/8)p = (35/48)p
← Didn't Know|Knew It →
If a car travels at 30 mph, how many feet per second does travel?
If a car travels at 30 mph, how many feet per second does travel?
Tap to reveal answer
30 miles / 1 hour * 5280 ft / 1 mile * 3600 seconds / 1 hour = 44 ft/sec
30 miles / 1 hour * 5280 ft / 1 mile * 3600 seconds / 1 hour = 44 ft/sec
← Didn't Know|Knew It →
In a group of 20 children, 25% are girls. How many boys are there?
In a group of 20 children, 25% are girls. How many boys are there?
Tap to reveal answer
Since
of the children are girls, this totals to
girls in the group.
boys.
Since of the children are girls, this totals to
girls in the group.
boys.
← Didn't Know|Knew It →
Trevor, James, and Will were each given a candy bar. Trevor ate 7/12 of his and Will ate 20% of his. If James ate more than Will and less than Trevor, what amount could James have eaten?
Trevor, James, and Will were each given a candy bar. Trevor ate 7/12 of his and Will ate 20% of his. If James ate more than Will and less than Trevor, what amount could James have eaten?
Tap to reveal answer
Turn Trevor and Will’s amounts into decimals to compare: 20% = 0.20 and 7/12 = 0.5083 rounded. When the answer choices are converted into decimals, 2/7 = 0.2871 is the only value between 0.20 and 0.5083.
Turn Trevor and Will’s amounts into decimals to compare: 20% = 0.20 and 7/12 = 0.5083 rounded. When the answer choices are converted into decimals, 2/7 = 0.2871 is the only value between 0.20 and 0.5083.
← Didn't Know|Knew It →
The square root of 5184 is:
The square root of 5184 is:
Tap to reveal answer
The easiest way to narrow down a square root from a list is to look at the last number on the squared number – in this case 4 – and compare it to the last number of the answer.
70 * 70 will equal XXX0
71 * 71 will equal XXX1
72 * 72 will equal XXX4
73 * 73 will equal XXX9
74 * 74 will equal XXX(1)6
Therefore 72 is the answer. Check by multiplying it out.
The easiest way to narrow down a square root from a list is to look at the last number on the squared number – in this case 4 – and compare it to the last number of the answer.
70 * 70 will equal XXX0
71 * 71 will equal XXX1
72 * 72 will equal XXX4
73 * 73 will equal XXX9
74 * 74 will equal XXX(1)6
Therefore 72 is the answer. Check by multiplying it out.
← Didn't Know|Knew It →
Evaluate:
0.082
Evaluate:
0.082
Tap to reveal answer
0.08 * 0.08
First square 8:
8 * 8 = 64
Then move the decimal four places to the left:
0.0064
0.08 * 0.08
First square 8:
8 * 8 = 64
Then move the decimal four places to the left:
0.0064
← Didn't Know|Knew It →
If x and y are integers and at least one of them is even, which of the following MUST be true?
If x and y are integers and at least one of them is even, which of the following MUST be true?
Tap to reveal answer
Since we are only told that "at least" one of the numbers is even, we could have one even and one odd integer OR we could have two even integers.
Even plus odd is odd, but even plus even is even, so x + y could be either even or odd.
Even times odd is even, and even times even is even, so xy must be even.
Since we are only told that "at least" one of the numbers is even, we could have one even and one odd integer OR we could have two even integers.
Even plus odd is odd, but even plus even is even, so x + y could be either even or odd.
Even times odd is even, and even times even is even, so xy must be even.
← Didn't Know|Knew It →
If xy = 100 and x and y are distinct positive integers, what is the smallest possible value of x + y?
If xy = 100 and x and y are distinct positive integers, what is the smallest possible value of x + y?
Tap to reveal answer
Consider the possible values for (x, y):
(1, 100)
(2, 50)
(4, 25)
(5, 20)
Note that (10, 10) is not possible since the two variables are to be distinct. The sums of the above pairs, respectively, are:
1 + 100 = 101
2 + 50 = 52
4 + 25 = 29
5 + 20 = 25, the smallest possible value.
Consider the possible values for (x, y):
(1, 100)
(2, 50)
(4, 25)
(5, 20)
Note that (10, 10) is not possible since the two variables are to be distinct. The sums of the above pairs, respectively, are:
1 + 100 = 101
2 + 50 = 52
4 + 25 = 29
5 + 20 = 25, the smallest possible value.
← Didn't Know|Knew It →
STUDENT ATHLETES WHO USE STEROIDS MEN WOMEN TOTAL BASKETBALL A B C SOCCER D E F TOTAL G H I
In the table above, each letter represents the number of students in each category. Which of the following must be equal to I?
| STUDENT ATHLETES WHO USE STEROIDS | |||
|---|---|---|---|
| MEN | WOMEN | TOTAL | |
| BASKETBALL | A | B | C |
| SOCCER | D | E | F |
| TOTAL | G | H | I |
In the table above, each letter represents the number of students in each category. Which of the following must be equal to I?
Tap to reveal answer
Since G is the total number of male athletes that use steroids and H is the total number of female athletes that use steroids, the sum of the two is equal to I, which is the total number of all students using steroids.
Since G is the total number of male athletes that use steroids and H is the total number of female athletes that use steroids, the sum of the two is equal to I, which is the total number of all students using steroids.
← Didn't Know|Knew It →
A particular ball always bounces back to 2/5 of the height of its previous bounce after being dropped. After the first bounce it reaches a height of 175 inches. Approximately how high (in inches) will it reach after its fifth bounce?
A particular ball always bounces back to 2/5 of the height of its previous bounce after being dropped. After the first bounce it reaches a height of 175 inches. Approximately how high (in inches) will it reach after its fifth bounce?
Tap to reveal answer
The first bounce reaches a height of 175. The second bounce will equal 175 multiplied by 2/5 or 70. Repeat this process. You will get the data below. 4.48 is rounded to 4.5.
The first bounce reaches a height of 175. The second bounce will equal 175 multiplied by 2/5 or 70. Repeat this process. You will get the data below. 4.48 is rounded to 4.5.
← Didn't Know|Knew It →
Alan is twice as old as Betty. He will be twice as old as Charlie in 10 years. If Charlie is 2 years old, how old is Betty?
Alan is twice as old as Betty. He will be twice as old as Charlie in 10 years. If Charlie is 2 years old, how old is Betty?
Tap to reveal answer
If Charlie is 2 years old now; in 10 years he will be 12 years old. At that point, Alan will be twice as old as Charlie. Twice 12 is 24. This means that Alan is currently 10 years younger than 24, or 14. Since Alan is currently twice as old as Betty, she must be half of 14, or 7.
If Charlie is 2 years old now; in 10 years he will be 12 years old. At that point, Alan will be twice as old as Charlie. Twice 12 is 24. This means that Alan is currently 10 years younger than 24, or 14. Since Alan is currently twice as old as Betty, she must be half of 14, or 7.
← Didn't Know|Knew It →
The ratio of 10 to 14 is closest to what value?
The ratio of 10 to 14 is closest to what value?
Tap to reveal answer
Another way to express ratios is through division. 10 divided by 14 is approximate 0.71.
Another way to express ratios is through division. 10 divided by 14 is approximate 0.71.
← Didn't Know|Knew It →
In 7 years Bill will be twice Amy’s age. Amy was 1.5 times Molly’s age 2 years ago. If Bill is 29 how old is Molly?
In 7 years Bill will be twice Amy’s age. Amy was 1.5 times Molly’s age 2 years ago. If Bill is 29 how old is Molly?
Tap to reveal answer
Consider
(Bill + 7) = 2 x (Amy + 7)
(Amy – 2) = 1.5 x (Molly – 2)
Solve for Molly using the two equations by finding Amy’s age in terms of Molly’s age.
Amy = 2 + 1.5 Molly – 3 = 1.5 x Molly – 1
Substitute this into the first equation:
(Bill + 7) = 2 x (Amy + 7) = 2 x (1.5 x Molly – 1 + 7) = 2 x (1.5 x Molly + 6) = 3 x Molly + 12
Solve for Molly:
Bill + 7 – 12 = 3 x Molly
Molly = (Bill – 5) ¸ 3
Substitute Bill = 29
Molly = (Bill – 5) ¸ 3 = 8
Consider
(Bill + 7) = 2 x (Amy + 7)
(Amy – 2) = 1.5 x (Molly – 2)
Solve for Molly using the two equations by finding Amy’s age in terms of Molly’s age.
Amy = 2 + 1.5 Molly – 3 = 1.5 x Molly – 1
Substitute this into the first equation:
(Bill + 7) = 2 x (Amy + 7) = 2 x (1.5 x Molly – 1 + 7) = 2 x (1.5 x Molly + 6) = 3 x Molly + 12
Solve for Molly:
Bill + 7 – 12 = 3 x Molly
Molly = (Bill – 5) ¸ 3
Substitute Bill = 29
Molly = (Bill – 5) ¸ 3 = 8
← Didn't Know|Knew It →
In a mixture of flour and sugar, the ratio of flour to sugar is 5 to 1. How many kilograms of flour will there be in 12 kilograms of this mixture?
In a mixture of flour and sugar, the ratio of flour to sugar is 5 to 1. How many kilograms of flour will there be in 12 kilograms of this mixture?
Tap to reveal answer
The question says that the mixture has 5 units of flour for every 1 unit of sugar, which adds up to a total of 5 + 1 = 6 units of the mixture; therefore in 6 kilograms of the mixture, 1 kilogram will be sugar.
To find how much sugar will be in 12 kilograms of the mixture, we multiply the amount of sugar in 6 kilograms of the mixture by 2, giving us 1 kilogram of sugar * 2 = 2 kilograms of sugar.
The question says that the mixture has 5 units of flour for every 1 unit of sugar, which adds up to a total of 5 + 1 = 6 units of the mixture; therefore in 6 kilograms of the mixture, 1 kilogram will be sugar.
To find how much sugar will be in 12 kilograms of the mixture, we multiply the amount of sugar in 6 kilograms of the mixture by 2, giving us 1 kilogram of sugar * 2 = 2 kilograms of sugar.
← Didn't Know|Knew It →
A dress was originally priced at $70. In January, it was put on sale for 20% off. Then in February, the sale price was lowered an additional $10 off of January's price. How much is the dress currently being sold for?
A dress was originally priced at $70. In January, it was put on sale for 20% off. Then in February, the sale price was lowered an additional $10 off of January's price. How much is the dress currently being sold for?
Tap to reveal answer
The dress started at $70. In January, it was marked down 20%. $70 * 0.2 = $14, so it was being sold for $70 – $14 = $56. Then we're told its price is again lowered, this time by $10. Now the price is $56 – $10 = $46.
The dress started at $70. In January, it was marked down 20%. $70 * 0.2 = $14, so it was being sold for $70 – $14 = $56. Then we're told its price is again lowered, this time by $10. Now the price is $56 – $10 = $46.
← Didn't Know|Knew It →