Cubes - ISEE Upper Level Quantitative Reasoning
Card 1 of 236
What is the surface area of a cube on which one face has a diagonal of
?
What is the surface area of a cube on which one face has a diagonal of
?
Tap to reveal answer
One of the faces of the cube could be drawn like this:

Notice that this makes a
triangle.
This means that we can create a proportion for the sides. On the standard triangle, the non-hypotenuse sides are both
, and the hypotenuse is
. This will allow us to make the proportion:

Multiplying both sides by
, you get:

To find the area of the square, you need to square this value:

Now, since there are
sides to the cube, multiply this by
to get the total surface area:

One of the faces of the cube could be drawn like this:

Notice that this makes a triangle.
This means that we can create a proportion for the sides. On the standard triangle, the non-hypotenuse sides are both , and the hypotenuse is
. This will allow us to make the proportion:
Multiplying both sides by , you get:
To find the area of the square, you need to square this value:
Now, since there are sides to the cube, multiply this by
to get the total surface area:
← Didn't Know|Knew It →
Which is the greater quantity?
(a) The volume of a cube with surface area
inches
(b) The volume of a cube with diagonal
inches
Which is the greater quantity?
(a) The volume of a cube with surface area inches
(b) The volume of a cube with diagonal inches
Tap to reveal answer
The cube with the greater sidelength has the greater volume, so we need only calculate and compare sidelengths.
(a)
, so the sidelength of the first cube can be found as follows:




inches
(b)
by an extension of the Pythagorean Theorem, so the sidelength of the second cube can be found as follows:





Since
,
. The second cube has the greater sidelength and, subsequently, the greater volume. This makes (b) greater.
The cube with the greater sidelength has the greater volume, so we need only calculate and compare sidelengths.
(a) , so the sidelength of the first cube can be found as follows:
inches
(b) by an extension of the Pythagorean Theorem, so the sidelength of the second cube can be found as follows:
Since ,
. The second cube has the greater sidelength and, subsequently, the greater volume. This makes (b) greater.
← Didn't Know|Knew It →
Cube 2 has twice the sidelength of Cube 1; Cube 3 has twice the sidelength of Cube 2; Cube 4 has twice the sidelength of Cube 3.
Which is the greater quantity?
(a) The mean of the volumes of Cube 1 and Cube 4
(b) The mean of the volumes of Cube 2 and Cube 3
Cube 2 has twice the sidelength of Cube 1; Cube 3 has twice the sidelength of Cube 2; Cube 4 has twice the sidelength of Cube 3.
Which is the greater quantity?
(a) The mean of the volumes of Cube 1 and Cube 4
(b) The mean of the volumes of Cube 2 and Cube 3
Tap to reveal answer
The sidelengths of Cubes 1, 2, 3, and 4 can be given values
, respectively.
Then the volumes of the cubes are as follows:
Cube 1: 
Cube 2: 
Cube 3: 
Cube 4: 
In both answer choices ask for a mean, so we can determine which answer (mean) is greater simply by comparing the sums of volumes.
(a) The sum of the volumes of Cubes 1 and 4 is
.
(b) The sum of the volumes of Cubes 2 and 3 is
.
Regardless of
, the sum of the volumes of Cubes 1 and 4 is greater, and therefore, so is their mean.
The sidelengths of Cubes 1, 2, 3, and 4 can be given values , respectively.
Then the volumes of the cubes are as follows:
Cube 1:
Cube 2:
Cube 3:
Cube 4:
In both answer choices ask for a mean, so we can determine which answer (mean) is greater simply by comparing the sums of volumes.
(a) The sum of the volumes of Cubes 1 and 4 is .
(b) The sum of the volumes of Cubes 2 and 3 is .
Regardless of , the sum of the volumes of Cubes 1 and 4 is greater, and therefore, so is their mean.
← Didn't Know|Knew It →
What is the volume of a cube on which one face has a diagonal of
?
What is the volume of a cube on which one face has a diagonal of
?
Tap to reveal answer
One of the faces of the cube could be drawn like this:

Notice that this makes a
triangle.
This means that we can create a proportion for the sides. On the standard triangle, the non-hypotenuse sides are both
, and the hypotenuse is
. This will allow us to make the proportion:

Multiplying both sides by
, you get:

Recall that the formula for the volume of a cube is:

Therefore, we can compute the volume using the side found above:

Now, rationalize the denominator:

One of the faces of the cube could be drawn like this:

Notice that this makes a triangle.
This means that we can create a proportion for the sides. On the standard triangle, the non-hypotenuse sides are both , and the hypotenuse is
. This will allow us to make the proportion:
Multiplying both sides by , you get:
Recall that the formula for the volume of a cube is:
Therefore, we can compute the volume using the side found above:
Now, rationalize the denominator:
← Didn't Know|Knew It →
The volume of a cube is 343 cubic inches. Give its surface area.
The volume of a cube is 343 cubic inches. Give its surface area.
Tap to reveal answer
The volume of a cube is defined by the formula

where
is the length of one side.
If
, then

and
![s = \sqrt[3]{343} = 7](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/194696/gif.latex)
So one side measures 7 inches.
The surface area of a cube is defined by the formula
, so

The surface area is 294 square inches.
The volume of a cube is defined by the formula
where is the length of one side.
If , then
and
So one side measures 7 inches.
The surface area of a cube is defined by the formula
, so
The surface area is 294 square inches.
← Didn't Know|Knew It →
What is the surface area of a cube with a volume of
?
What is the surface area of a cube with a volume of
?
Tap to reveal answer
We know that the volume of a cube can be found with the equation:
, where
is the side length of the cube.
Now, if the volume is
, then we know:

Either with your calculator or with careful math, you can solve by taking the cube-root of both sides. This gives you:

This means that each side of the cube is
long; therefore, each face has an area of
, or
. Since there are
sides to a cube, this means the total surface area is
, or
.
We know that the volume of a cube can be found with the equation:
, where
is the side length of the cube.
Now, if the volume is , then we know:
Either with your calculator or with careful math, you can solve by taking the cube-root of both sides. This gives you:
This means that each side of the cube is
long; therefore, each face has an area of
, or
. Since there are
sides to a cube, this means the total surface area is
, or
.
← Didn't Know|Knew It →
What is the surface area of a cube that has a side length of
?
What is the surface area of a cube that has a side length of
?
Tap to reveal answer
This question is very easy. Do not over-think it! All you need to do is calculate the area of one side of the cube. Then, multiply that by
(since the cube has
sides). Each side of a cube is, of course, a square; therefore, the area of one side of this cube is
, or
. This means that the whole cube has a surface area of
or
.
This question is very easy. Do not over-think it! All you need to do is calculate the area of one side of the cube. Then, multiply that by (since the cube has
sides). Each side of a cube is, of course, a square; therefore, the area of one side of this cube is
, or
. This means that the whole cube has a surface area of
or
.
← Didn't Know|Knew It →
What is the surface area of a cube with side length
?
What is the surface area of a cube with side length
?
Tap to reveal answer
Recall that the formula for the surface area of a cube is:
, where
is the length of a side of the cube. This equation is easy to memorize because it is merely a multiplication of a single side (
) by
because a cube has
equal sides.
For our data, we know that
; therefore, our equation is:

Recall that the formula for the surface area of a cube is:
, where
is the length of a side of the cube. This equation is easy to memorize because it is merely a multiplication of a single side (
) by
because a cube has
equal sides.
For our data, we know that ; therefore, our equation is:
← Didn't Know|Knew It →
What is the surface area of a cube with a volume
?
What is the surface area of a cube with a volume
?
Tap to reveal answer
To solve this, first calculate the side length based on the volume given. Recall that the equation for the volume of a cube is:
, where
is the side length.
For our data, this gives us:

Taking the cube-root of both sides, we get:

Now, use the surface area formula to compute the total surface area:
, where
is the length of a side of the cube. This equation is easy to memorize because it is merely a multiplication of a single side (
) by
because a cube has
equal sides.
For our data, this gives us:

To solve this, first calculate the side length based on the volume given. Recall that the equation for the volume of a cube is:
, where
is the side length.
For our data, this gives us:
Taking the cube-root of both sides, we get:
Now, use the surface area formula to compute the total surface area:
, where
is the length of a side of the cube. This equation is easy to memorize because it is merely a multiplication of a single side (
) by
because a cube has
equal sides.
For our data, this gives us:
← Didn't Know|Knew It →
What is the surface area of a cube with a volume
?
What is the surface area of a cube with a volume
?
Tap to reveal answer
To solve this, first calculate the side length based on the volume given. Recall that the equation for the volume of a cube is:
, where
is the side length.
For our data, this gives us:

Taking the cube-root of both sides, we get:

(You will need to use a calculator for this. If your calculator gives you something like
. . . it is okay to round. This is just the nature of taking roots!).
Now, use the surface area formula to compute the total surface area:
, where
is the length of a side of the cube. This equation is easy to memorize because it is merely a multiplication of a single side (
) by
because a cube has
equal sides.
For our data, this gives us:

To solve this, first calculate the side length based on the volume given. Recall that the equation for the volume of a cube is:
, where
is the side length.
For our data, this gives us:
Taking the cube-root of both sides, we get:
(You will need to use a calculator for this. If your calculator gives you something like . . . it is okay to round. This is just the nature of taking roots!).
Now, use the surface area formula to compute the total surface area:
, where
is the length of a side of the cube. This equation is easy to memorize because it is merely a multiplication of a single side (
) by
because a cube has
equal sides.
For our data, this gives us:
← Didn't Know|Knew It →
What is the surface area for a cube with a diagonal length of
?
What is the surface area for a cube with a diagonal length of
?
Tap to reveal answer
Now, this could look like a difficult problem; however, think of the equation for finding the length of the diagonal of a cube. It is like the Pythagorean Theorem, just adding an additional dimension:

(It is very easy, because the three lengths are all the same:
).
So, we know this, then:

To solve, you can factor out an
from the root on the right side of the equation:

Just by looking at this, you can tell that the answer is:

Now, use the surface area formula to compute the total surface area:
, where
is the length of a side of the cube. This equation is easy to memorize because it is merely a multiplication of a single side (
) by
because a cube has
equal sides.
For our data, this is:

Now, this could look like a difficult problem; however, think of the equation for finding the length of the diagonal of a cube. It is like the Pythagorean Theorem, just adding an additional dimension:
(It is very easy, because the three lengths are all the same: ).
So, we know this, then:
To solve, you can factor out an from the root on the right side of the equation:
Just by looking at this, you can tell that the answer is:
Now, use the surface area formula to compute the total surface area:
, where
is the length of a side of the cube. This equation is easy to memorize because it is merely a multiplication of a single side (
) by
because a cube has
equal sides.
For our data, this is:
← Didn't Know|Knew It →
What is the volume of a cube with a diagonal length of
?
What is the volume of a cube with a diagonal length of
?
Tap to reveal answer
Now, this could look like a difficult problem. However, think of the equation for finding the length of the diagonal of a cube. It is like the Pythagorean Theorem, just adding an additional dimension:

(It is very easy, because the three lengths are all the same:
).
So, we know this, then:

To solve, you can factor out an
from the root on the right side of the equation:

Just by looking at this, you can tell that the answer is:

Now, use the equation for the volume of a cube:

(It is like doing the area of a square, then adding another dimension!).
For our data, it is:

Now, this could look like a difficult problem. However, think of the equation for finding the length of the diagonal of a cube. It is like the Pythagorean Theorem, just adding an additional dimension:
(It is very easy, because the three lengths are all the same: ).
So, we know this, then:
To solve, you can factor out an from the root on the right side of the equation:
Just by looking at this, you can tell that the answer is:
Now, use the equation for the volume of a cube:
(It is like doing the area of a square, then adding another dimension!).
For our data, it is:
← Didn't Know|Knew It →
What is the volume of a cube with side length
? Round your answer to the nearest hundredth.
What is the volume of a cube with side length
? Round your answer to the nearest hundredth.
Tap to reveal answer
This question is relatively straightforward. The equation for the volume of a cube is:

(It is like doing the area of a square, then adding another dimension!)
Now, for our data, we merely need to "plug and chug:"

This question is relatively straightforward. The equation for the volume of a cube is:
(It is like doing the area of a square, then adding another dimension!)
Now, for our data, we merely need to "plug and chug:"
← Didn't Know|Knew It →
One of your holiday gifts is wrapped in a cube-shaped box.
If one of the edges has a length of 6 inches, what is the volume of the box?
One of your holiday gifts is wrapped in a cube-shaped box.
If one of the edges has a length of 6 inches, what is the volume of the box?
Tap to reveal answer
One of your holiday gifts is wrapped in a cube-shaped box.
If one of the edges has a length of 6 inches, what is the volume of the box?
Find the volume of a cube via the following:

One of your holiday gifts is wrapped in a cube-shaped box.
If one of the edges has a length of 6 inches, what is the volume of the box?
Find the volume of a cube via the following:
← Didn't Know|Knew It →
Find the volume of a cube with a height of 3in.
Find the volume of a cube with a height of 3in.
Tap to reveal answer
To find the volume of a cube, we will use the following formula:

where a is the length of any side of the cube.
Now, we know the height of the cube is 3in. Because it is a cube, all sides (lengths, widths, height) are the same. That is why we can find any length for the formula.
Knowing this, we can substitute into the formula. We get




To find the volume of a cube, we will use the following formula:
where a is the length of any side of the cube.
Now, we know the height of the cube is 3in. Because it is a cube, all sides (lengths, widths, height) are the same. That is why we can find any length for the formula.
Knowing this, we can substitute into the formula. We get
← Didn't Know|Knew It →
The volume of a cube is
. What is the length of an edge of the cube?
The volume of a cube is . What is the length of an edge of the cube?
Tap to reveal answer
Let
be the length of an edge of the cube. The volume of a cube can be determined by the equation:


![\sqrt[3]{x^3}=\sqrt[3]{64}](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/167958/gif.latex)

Let be the length of an edge of the cube. The volume of a cube can be determined by the equation:
← Didn't Know|Knew It →

The above cube has surface area 486. Evaluate
.

The above cube has surface area 486. Evaluate .
Tap to reveal answer
The surface area of a cube is six times the square of the length of each edge, which here is
. Therefore,

Substituting, then solving for
:




Since the sidelength is positive,


The surface area of a cube is six times the square of the length of each edge, which here is . Therefore,
Substituting, then solving for :
Since the sidelength is positive,
← Didn't Know|Knew It →
There is a sculpture in front of town hall which is shaped like a cube. If it has a volume of
, what is the length of one side of the cube?
There is a sculpture in front of town hall which is shaped like a cube. If it has a volume of , what is the length of one side of the cube?
Tap to reveal answer
There is a sculpture in front of town hall which is shaped like a cube. If it has a volume of
, what is the length of one side of the cube?
To find the side length of a cube from its volume, simply use the following formula:

Plug in what is known and use some algebra to get our answer:
![s=\sqrt[3]{343ft^3}=7ft](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/764510/gif.latex)
There is a sculpture in front of town hall which is shaped like a cube. If it has a volume of , what is the length of one side of the cube?
To find the side length of a cube from its volume, simply use the following formula:
Plug in what is known and use some algebra to get our answer:
← Didn't Know|Knew It →
The length of the side of a cube is
. Give its surface area in terms of
.
The length of the side of a cube is . Give its surface area in terms of
.
Tap to reveal answer
Substitute
in the formula for the surface area of a cube:





Substitute in the formula for the surface area of a cube:
← Didn't Know|Knew It →
You have a cube with a volume of
. What is the cube's side length?
You have a cube with a volume of . What is the cube's side length?
Tap to reveal answer
You have a cube with a volume of
. What is the cube's side length?
If we begin with the formula for volume of a cube, we can work backwards to find the side length.


![s=\sqrt[3]{125m^3}=5m](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/768158/gif.latex)
Making our answer:

You have a cube with a volume of . What is the cube's side length?
If we begin with the formula for volume of a cube, we can work backwards to find the side length.
Making our answer:
← Didn't Know|Knew It →