Understanding powers and roots - GMAT Quantitative
Card 1 of 400
Evaluate
.
Evaluate .
Tap to reveal answer
, so
![\left (1,296^{\frac{1}{3} } \right )^{\frac{1}{2} } = \left [ \left (6 ^{4 } \right )^{\frac{1}{3} } \right ]^{\frac{1}{2} } = 6 ^{4 \cdot \frac{1}{3} \cdot \frac{1}{2}} =6 ^{ \frac{2}{3} }](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/267183/gif.latex)
For all integers
and all positive bases
,
by definition. So set
:
![\left (1,296^{\frac{1}{3} } \right )^{\frac{1}{2} }=6 ^{ \frac{2}{3} } = \sqrt[3]{6 ^{2}} = \sqrt[3]{36}](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/267189/gif.latex)
, so
For all integers and all positive bases
,
by definition. So set
:
← Didn't Know|Knew It →
Simplify by rationalizing the denominator:

Simplify by rationalizing the denominator:
Tap to reveal answer
Multiply both numerator and denominator by the conjugate of the denominator, which is
:






Multiply both numerator and denominator by the conjugate of the denominator, which is :
← Didn't Know|Knew It →
Tap to reveal answer
← Didn't Know|Knew It →
Which of the following numbers is irrational?
Which of the following numbers is irrational?
Tap to reveal answer
A square root of a number is irrational if the number inside the square root is not a perfect square. Since 2 is not a perfect square,
is irrational
is rational, because
is a perfect cube. (
)
A square root of a number is irrational if the number inside the square root is not a perfect square. Since 2 is not a perfect square, is irrational
is rational, because
is a perfect cube. (
)
← Didn't Know|Knew It →
What is
?
What is ?
Tap to reveal answer
← Didn't Know|Knew It →
What is
?
What is ?
Tap to reveal answer
← Didn't Know|Knew It →
Evaluate
, expressing the result as a simplified radical if applicable.
Evaluate , expressing the result as a simplified radical if applicable.
Tap to reveal answer
For all integers
and all positive bases
,
by definition.
Set
:
![24^{ \frac{2}{3}} = \sqrt[3]{24^{2}} = \sqrt[3]{576} = \sqrt[3]{64} \cdot \sqrt[3]{9}= 4 \sqrt[3]{9}](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/272938/gif.latex)
For all integers and all positive bases
,
by definition.
Set :
← Didn't Know|Knew It →
Which of the following is equivalent to
?
You may assume
to be positive.
Which of the following is equivalent to ?
You may assume to be positive.
Tap to reveal answer
Convert the roots to fractional exponents, then back, as follows:
![\sqrt[3]{\sqrt[4]{x}} = \sqrt[3]{ x^{\frac{1}{4}}} = \left ( x^{\frac{1}{4}} \right ) ^{\frac{1}{3}}= x ^{\frac{1}{4} \cdot \frac{1}{3}} = x^{\frac{1}{12}}= \sqrt[12]{x}](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/267104/gif.latex)
Convert the roots to fractional exponents, then back, as follows:
← Didn't Know|Knew It →
Evaluate
.
Evaluate .
Tap to reveal answer
← Didn't Know|Knew It →
What is
?
What is ?
Tap to reveal answer
← Didn't Know|Knew It →
Solve: 
Solve:
Tap to reveal answer
First, FOIL:


Factor out 

First, FOIL:
Factor out
← Didn't Know|Knew It →
Solve: 
Solve:
Tap to reveal answer
First factor. 
Simplify. 
First factor.
Simplify.
← Didn't Know|Knew It →
If
, what is 
If , what is
Tap to reveal answer
← Didn't Know|Knew It →
Evaluate
.
Evaluate .
Tap to reveal answer
, so

However,
has no real square root. The expression is not equal to a real number.
, so
However, has no real square root. The expression is not equal to a real number.
← Didn't Know|Knew It →
If the side length of a cube is tripled, how does the volume of the cube change?
If the side length of a cube is tripled, how does the volume of the cube change?
Tap to reveal answer
The equation for the volume of a cube is
. If the length is tripled, it becomes
, and
, so the volume increases by 27 times the original size.
The equation for the volume of a cube is . If the length is tripled, it becomes
, and
, so the volume increases by 27 times the original size.
← Didn't Know|Knew It →
Evaluate: 
Evaluate:
Tap to reveal answer
← Didn't Know|Knew It →
Solve: 
Solve:
Tap to reveal answer
Solve
Solve
← Didn't Know|Knew It →
Tap to reveal answer
← Didn't Know|Knew It →
In the sequence 1, 3, 9, 27, 81, … , each term after the first is three times the previous term. What is the sum of the 9th and 10th terms in the sequence?
In the sequence 1, 3, 9, 27, 81, … , each term after the first is three times the previous term. What is the sum of the 9th and 10th terms in the sequence?
Tap to reveal answer
We can rewrite the sequence as
,
,
,
,
, … ,
and we can see that the 9th term in the sequence is
and the 10th term in the sequence is
. Therefore, the sum of the 9th and 10th terms would be

We can rewrite the sequence as ,
,
,
,
, … ,
and we can see that the 9th term in the sequence is and the 10th term in the sequence is
. Therefore, the sum of the 9th and 10th terms would be
← Didn't Know|Knew It →
Simplify this expression as much as possible:

Simplify this expression as much as possible:
Tap to reveal answer
← Didn't Know|Knew It →