How to find the area of a 45/45/90 right isosceles triangle

Geometry · Learn by Concept

Help Questions

Geometry › How to find the area of a 45/45/90 right isosceles triangle

1 - 10
1

If the hypotenuse of a right isosceles triangle is , what is the area of the triangle?

CORRECT

0

0

0

Explanation

An isosceles right triangle is another way of saying that the triangle is a triangle.

3

Now, recall the Pythagorean Theorem:

Because we are working with a triangle, the base and the height have the same length. We can rewrite the above equation as the following:

Now, plug in the value of the hypotenuse to find the height for the given triangle.

Now, recall how to find the area of a triangle:

Since the base and the height are the same length, we can then find the area of the given triangle.

2

If the hypotenuse of a right isosceles triangle is , what is the area of the triangle?

CORRECT

0

0

0

Explanation

An isosceles right triangle is another way of saying that the triangle is a triangle.

3

Now, recall the Pythagorean Theorem:

Because we are working with a triangle, the base and the height have the same length. We can rewrite the above equation as the following:

Now, plug in the value of the hypotenuse to find the height for the given triangle.

Now, recall how to find the area of a triangle:

Since the base and the height are the same length, we can then find the area of the given triangle.

3

Find the area of the triangle if the radius of the circle is .

1

CORRECT

0

0

0

Explanation

1

The two tick marks on the image indicate that those sides are congruent; therefore, this is an isosceles right triangle.

Notice that the hypotenuse of the triangle is also the diameter of the circle. Recall the relationship between the diameter of a circle and its radius:

Substitute in the value of the radius to find the length of the diameter.

Simplify.

Now, use the Pythagorean theorem to find the lengths of the missing sides of the triangle.

Now, recall how to find the area of a triangle:

In this case, because we have an isosceles right triangle,

Take the equation derived from the Pythagorean theorem and plug it in to the equation above.

Simplify.

Now, substitute in the value of the hypotenuse to find the area of the triangle.

Solve.

4

Find the area of the triangle if the radius of the circle is .

1

CORRECT

0

0

0

Explanation

1

The two tick marks on the image indicate that those sides are congruent; therefore, this is an isosceles right triangle.

Notice that the hypotenuse of the triangle is also the diameter of the circle. Recall the relationship between the diameter of a circle and its radius:

Substitute in the value of the radius to find the length of the diameter.

Simplify.

Now, use the Pythagorean theorem to find the lengths of the missing sides of the triangle.

Now, recall how to find the area of a triangle:

In this case, because we have an isosceles right triangle,

Take the equation derived from the Pythagorean theorem and plug it in to the equation above.

Simplify.

Now, substitute in the value of the hypotenuse to find the area of the triangle.

Solve.

5

Find the area of the triangle if the radius of the circle is .

1

CORRECT

0

0

0

Explanation

1

The two tick marks on the image indicate that those sides are congruent; therefore, this is an isosceles right triangle.

Notice that the hypotenuse of the triangle is also the diameter of the circle. Recall the relationship between the diameter of a circle and its radius:

Substitute in the value of the radius to find the length of the diameter.

Simplify.

Now, use the Pythagorean theorem to find the lengths of the missing sides of the triangle.

Now, recall how to find the area of a triangle:

In this case, because we have an isosceles right triangle,

Take the equation derived from the Pythagorean theorem and plug it in to the equation above.

Simplify.

Now, substitute in the value of the hypotenuse to find the area of the triangle.

Solve.

6

If the hypotenuse of a right isosceles triangle is , what is the area of the triangle?

CORRECT

0

0

0

Explanation

An isosceles right triangle is another way of saying that the triangle is a triangle.

3

Now, recall the Pythagorean Theorem:

Because we are working with a triangle, the base and the height have the same length. We can rewrite the above equation as the following:

Now, plug in the value of the hypotenuse to find the height for the given triangle.

Now, recall how to find the area of a triangle:

Since the base and the height are the same length, we can then find the area of the given triangle.

7

Find the area of the triangle if the diameter of the circle is .

CORRECT

0

0

0

0

Explanation

1

Notice that the given triangle is a right isosceles triangle. The hypotenuse of the triangle is the same as the diameter of the circle; therefore, we can use the Pythagorean theorem to find the length of the legs of this triangle.

Substitute in the given hypotenuse to find the length of the leg of a triangle.

Simplify.

Now, recall how to find the area of a triangle.

Since we have a right isosceles triangle, the base and the height are the same length.

Solve.

8

Find the area of the triangle if the radius of the circle is .

1

CORRECT

0

0

0

Explanation

1

The two tick marks on the image indicate that those sides are congruent; therefore, this is an isosceles right triangle.

Notice that the hypotenuse of the triangle is also the diameter of the circle. Recall the relationship between the diameter of a circle and its radius:

Substitute in the value of the radius to find the length of the diameter.

Simplify.

Now, use the Pythagorean theorem to find the lengths of the missing sides of the triangle.

Now, recall how to find the area of a triangle:

In this case, because we have an isosceles right triangle,

Take the equation derived from the Pythagorean theorem and plug it in to the equation above.

Simplify.

Now, substitute in the value of the hypotenuse to find the area of the triangle.

Solve.

9

Find the area of the triangle below.

24

CORRECT

0

0

0

0

Explanation

The key to finding the area of our triangle is to reaize that it is isosceles and therefore is a 45-45-90 triangle; therefore, we know the legs of our triangle are congruent and that each can be found by dividing the length of the hypotenuse by .

Rationalizing the denominator simplifies our result; however, we are interested in the area, not just the length of a leg; we remember that the formula for the area of a triangle is

where is the base and is the height; however, in our right triangle, the base and height are simply the two legs; therefore, we can calculate the area by substituting.

10

Find the area of the triangle if the diameter of the circle is .

CORRECT

0

0

0

0

Explanation

1

Notice that the given triangle is a right isosceles triangle. The hypotenuse of the triangle is the same as the diameter of the circle; therefore, we can use the Pythagorean theorem to find the length of the legs of this triangle.

Substitute in the given hypotenuse to find the length of the leg of a triangle.

Simplify.

Now, recall how to find the area of a triangle.

Since we have a right isosceles triangle, the base and the height are the same length.

Solve.