Vector and Matrix Quantities: Scalar Multiplication of Vectors (CCSS.N-VM.5)

Common Core High School Number And Quantity · Learn by Concept

Help Questions

Common Core High School Number And Quantity › Vector and Matrix Quantities: Scalar Multiplication of Vectors (CCSS.N-VM.5)

1 - 9
1

What is $3\mathbf{u}$ if $\mathbf{u}=\langle 2,-1\rangle$?

$\langle 5,-1\rangle$

0

$\langle 6,-3\rangle$

CORRECT

$\langle 6,-1\rangle$

0

$\langle 2,-3\rangle$

0

Explanation

Multiply each component by 3: $3\langle 2,-1\rangle=\langle 6,-3\rangle$. Scalar multiplication scales both components.

2

What is $-2\langle 3,4\rangle$?

$\langle 1,2\rangle$

0

$\langle -6,4\rangle$

0

$\langle 6,8\rangle$

0

$\langle -6,-8\rangle$

CORRECT

Explanation

Multiply both components by $-2$: $-2\langle 3,4\rangle=\langle -6,-8\rangle$. The negative reverses direction.

3

If $\mathbf{v}=\langle -5,2\rangle$ and $k=\tfrac{1}{2}$, what is $k\mathbf{v}$?

$\langle -\tfrac{5}{2},1\rangle$

CORRECT

$\langle -\tfrac{5}{2},2\rangle$

0

$\langle -\tfrac{3}{2},1\rangle$

0

$\langle -\tfrac{3}{2},\tfrac{1}{2}\rangle$

0

Explanation

Scale each component by $\tfrac{1}{2}$: $\tfrac{1}{2}\langle -5,2\rangle=\langle -\tfrac{5}{2},1\rangle$. This shrinks the magnitude by a factor of 2.

4

Which statement about scalar multiplication is true for a scalar $c$ and nonzero vector $\mathbf{v}$?

$\lVert c\mathbf{v}\rVert=c^2\lVert\mathbf{v}\rVert$

0

Multiplying by $-1$ does not change direction

0

$\lVert c\mathbf{v}\rVert=|c|\lVert\mathbf{v}\rVert$, and the direction of $c\mathbf{v}$ is along $\mathbf{v}$ if $c>0$ and opposite if $c<0$

CORRECT

Scalar multiplication adds $c$ to each component

0

Explanation

Scalar multiplication scales magnitude by $|c|$ and keeps direction for $c>0$, reverses it for $c<0$. So $\lVert c\mathbf{v}\rVert=|c|\lVert\mathbf{v}\rVert$.

5

Given $\mathbf{u}=\langle 7,-3\rangle$, which vector equals $-3\mathbf{u}$?

$\langle 4,-6\rangle$

0

$\langle -21,9\rangle$

CORRECT

$\langle -21,-9\rangle$

0

$\langle 7,-9\rangle$

0

Explanation

Multiply both components by $-3$: $-3\langle 7,-3\rangle=\langle -21,9\rangle$. Both components are scaled; the negative flips direction.

6

What is $3\mathbf{u}$ if $\mathbf{u}=\langle 2,-1\rangle$?

$\langle 5,2\rangle$

0

$\langle 6,-3\rangle$

CORRECT

$\langle 6,-1\rangle$

0

$\langle 6,-2\rangle$

0

Explanation

Multiply both components by 3: $3\langle 2,-1\rangle=\langle 6,-3\rangle$. Scalar multiplication scales each component and thus the magnitude by the same factor.

7

What is $-2\langle 3,4\rangle$?

$\langle 1,2\rangle$

0

$\langle -6,4\rangle$

0

$\langle -2,-8\rangle$

0

$\langle -6,-8\rangle$

CORRECT

Explanation

Multiply each component by $-2$: $-2\langle 3,4\rangle=\langle -6,-8\rangle$. The magnitude is doubled and the direction is reversed because the scalar is negative.

8

If $|\mathbf{v}|=5$, what is $|-3\mathbf{v}|$?

15

CORRECT

-15

0

2

0

5

0

Explanation

Use $|c\mathbf{v}|=|c|,|\mathbf{v}|$. Here $|{-3}|\cdot 5=15$.

9

For nonzero $\mathbf{v}$, which statement is true about the directions of $\tfrac{1}{2}\mathbf{v}$ and $-\mathbf{v}$?

Both $\tfrac{1}{2}\mathbf{v}$ and $-\mathbf{v}$ point opposite to $\mathbf{v}$.

0

$\tfrac{1}{2}\mathbf{v}$ reverses direction; $-\mathbf{v}$ keeps the same direction.

0

$\tfrac{1}{2}\mathbf{v}$ keeps the same direction; $-\mathbf{v}$ reverses direction.

CORRECT

Both keep the same direction as $\mathbf{v}$.

0

Explanation

Positive scalars keep direction and scale magnitude; negative scalars reverse direction. Thus $\tfrac{1}{2}\mathbf{v}$ points along $\mathbf{v}$, while $-\mathbf{v}$ points against $\mathbf{v}$.