Vector and Matrix Quantities: Solving Problems with Vectors and Velocity (CCSS.N-VM.3)

Common Core High School Number And Quantity · Learn by Concept

Help Questions

Common Core High School Number And Quantity › Vector and Matrix Quantities: Solving Problems with Vectors and Velocity (CCSS.N-VM.3)

1 - 10
1

What is the direction angle of the vector ⟨-7, -24⟩?

$\arctan(-7-24)$

0

$\arctan\left(\dfrac{-24}{-7}\right)$

CORRECT

$\arctan\left(\dfrac{-7}{-24}\right)$

0

$\arctan\left(\dfrac{-24}{7}\right)$

0

Explanation

Use $\theta=\arctan!\left(\dfrac{b}{a}\right)=\arctan!\left(\dfrac{-24}{-7}\right)$. Flipping the ratio, adding components, or dropping a negative sign leads to wrong expressions.

2

A velocity vector is $\langle -6, 8 \rangle$ m/s. What is its speed (magnitude)?

14

0

2

0

10

CORRECT

$\sqrt{2}$

0

Explanation

Magnitude is the length: $\sqrt{(-6)^2+8^2}=\sqrt{36+64}=\sqrt{100}=10$. This comes from the Pythagorean theorem applied to the horizontal and vertical components.

3

What is the direction angle of the vector $\langle 3, 3\sqrt{3} \rangle$?

$\arctan!\left(\dfrac{3\sqrt{3}}{3}\right)$

CORRECT

$\arctan!\left(\dfrac{3}{3\sqrt{3}}\right)$

0

$\arctan(3\sqrt{3}+3)$

0

$\arctan(3\cdot 3\sqrt{3})$

0

Explanation

For a vector $\langle a,b\rangle$ in Quadrant I, the direction angle is $\theta=\arctan!\left(\dfrac{b}{a}\right)$. Here $a=3$, $b=3\sqrt{3}$, so $\theta=\arctan!\left(\dfrac{3\sqrt{3}}{3}\right)$.

4

Which statement describes the vector $\langle -5, 12 \rangle$?

It lies in Quadrant I.

0

Its magnitude is $13$.

CORRECT

Its magnitude is $7$.

0

Its magnitude is $\sqrt{(-5)+12}$.

0

Explanation

The magnitude is $\sqrt{(-5)^2+12^2}=\sqrt{25+144}=\sqrt{169}=13$ by the Pythagorean theorem. The vector has negative $x$ and positive $y$, so it does not lie in Quadrant I.

5

What is the magnitude of the vector $\langle 5, 2 \rangle$?

$5+2$

0

$\sqrt{5^2-2^2}$

0

$\sqrt{5+2}$

0

$\sqrt{5^2+2^2}$

CORRECT

Explanation

Magnitude is length from the origin: $\sqrt{5^2+2^2}=\sqrt{25+4}=\sqrt{29}$. This follows from the Pythagorean theorem on the right triangle formed by the components.

6

What is the direction angle of the vector $\langle 4, 7 \rangle$?

$\arctan!\left(\dfrac{7}{4}\right)$

CORRECT

$\arctan!\left(\dfrac{4}{7}\right)$

0

$\arctan(7+4)$

0

$\arctan(7-4)$

0

Explanation

For $\langle a,b\rangle$ with $a>0$ and $b>0$, $\theta=\arctan!\left(\dfrac{b}{a}\right)$. Thus $\theta=\arctan!\left(\dfrac{7}{4}\right)$. The other options flip $a$ and $b$ or combine components incorrectly.

7

What is the magnitude of $\langle -3,4\rangle$?

5

CORRECT

7

0

$\sqrt{7}$

0

$\sqrt{13}$

0

Explanation

Use the Pythagorean theorem for vector length: $|\langle a,b\rangle|=\sqrt{a^2+b^2}$. Here $\sqrt{(-3)^2+4^2}=\sqrt{9+16}=5$.

8

What is the direction angle of $\langle -3,3\rangle$ (measured from the positive $x$-axis)?

45°

0

135°

CORRECT

-45°

0

315°

0

Explanation

Compute $\theta=\arctan!\left(\tfrac{b}{a}\right)=\arctan!\left(\tfrac{3}{-3}\right)=\arctan(-1)=-45°$. Since $a<0$ and $b>0$ (Quadrant II), adjust to $180°-45°=135°$.

9

Which statement describes the vector $\langle 6,8\rangle$?

It has magnitude $6+8=14$ and points opposite $\langle 3,4\rangle$.

0

It has magnitude $\sqrt{6+8}$ and points in Quadrant III.

0

It has magnitude 10 and the same direction as $\langle 3,4\rangle$.

CORRECT

It has magnitude 10 and is perpendicular to $\langle 3,4\rangle$.

0

Explanation

Magnitude uses the Pythagorean theorem: $\sqrt{6^2+8^2}=\sqrt{36+64}=10$. Also $\langle 6,8\rangle=2\langle 3,4\rangle$, so it has the same direction.

10

What is the direction angle of $\langle 5,-5\sqrt{3}\rangle$ (in degrees from the positive $x$-axis)?

60°

0

300°

CORRECT

120°

0

240°

0

Explanation

Compute $\theta=\arctan!\left(\tfrac{b}{a}\right)=\arctan!\left(\tfrac{-5\sqrt{3}}{5}\right)=\arctan(-\sqrt{3})=-60°$. With $a>0$, $b<0$ (Quadrant IV), the standard angle is $360°-60°=300°$.