Vector and Matrix Quantities: Finding Components of Vectors (CCSS.N-VM.2)

Common Core High School Number And Quantity · Learn by Concept

Help Questions

Common Core High School Number And Quantity › Vector and Matrix Quantities: Finding Components of Vectors (CCSS.N-VM.2)

1 - 9
1

Find the component form of the vector from $A(-2,5)$ to $B(4,-1)$.

$\langle 6,-6\rangle$

CORRECT

$\langle -6,6\rangle$

0

$\langle 2,-3\rangle$

0

$\langle -2,3\rangle$

0

Explanation

Subtract initial from terminal: $\langle 4-(-2),,-1-5\rangle=\langle 6,-6\rangle$.

2

What condition makes two vectors equal?

They have the same magnitude only.

0

They have the same magnitude and direction (equivalently, the same components).

CORRECT

They point in the same direction, regardless of length.

0

They have the same $x$-components only.

0

Explanation

Two vectors are equal iff corresponding components match: $\langle a,b\rangle=\langle c,d\rangle$ only when $a=c$ and $b=d$, which is the same as having equal magnitude and direction.

3

Find the component form of the vector from $P(3,-7)$ to $Q(-5,2)$.

$\langle 8,-9\rangle$

0

$\langle -8,-9\rangle$

0

$\langle -8,9\rangle$

CORRECT

$\langle -2,9\rangle$

0

Explanation

Compute $Q-P$: $\langle -5-3,,2-(-7)\rangle=\langle -8,9\rangle$.

4

Given $u=\langle 3,-4\rangle$, $v=\langle -3,4\rangle$, $w=\langle 3,-4\rangle$, and $t=\langle 0,5\rangle$, which vectors are equal?

$u$ and $v$

0

$v$ and $w$

0

$v$ and $t$

0

$u$ and $w$

CORRECT

Explanation

Vectors are equal if their components match; here $u$ and $w$ are both $\langle 3,-4\rangle$.

5

Find the component form of the vector from $S(1,-4,2)$ to $T(-3,5,-1)$.

$\langle -4,9,-3\rangle$

CORRECT

$\langle 4,-9,3\rangle$

0

$\langle -4,1,-3\rangle$

0

$\langle -2,9,-1\rangle$

0

Explanation

Subtract initial from terminal component-wise: $\langle -3-1,,5-(-4),,-1-2\rangle=\langle -4,9,-3\rangle$.

6

Find the component form of the vector from $P(-3,5)$ to $Q(4,-2)$.

$\langle -7,7\rangle$

0

$\langle 7,7\rangle$

0

$\langle 7,-7\rangle$

CORRECT

$\langle -7,-7\rangle$

0

Explanation

Use $\langle x_2-x_1,,y_2-y_1\rangle$. Here $\langle 4-(-3),,-2-5\rangle=\langle 7,-7\rangle$.

7

Given $u=\langle 2,-5\rangle$, $v=\langle -2,5\rangle$, $w=\langle 2,-5\rangle$, and $t=\langle 5,-2\rangle$, which vectors are equal?

$u$ and $w$

CORRECT

$u$ and $v$

0

$v$ and $t$

0

$u$ and $t$

0

Explanation

Vectors are equal if they have the same components (equivalently, the same magnitude and direction). Only $u$ and $w$ have identical components.

8

Find the component form of the vector from $C(7,-1)$ to $D(-2,9)$.

$\langle 9,10\rangle$

0

$\langle -9,-10\rangle$

0

$\langle -11,8\rangle$

0

$\langle -9,10\rangle$

CORRECT

Explanation

Compute $\langle -2-7,,9-(-1)\rangle=\langle -9,10\rangle$.

9

Find the component form of the vector from $E(-4,-6)$ to $F(3,-2)$.

$\langle -7,-4\rangle$

0

$\langle 7,-4\rangle$

0

$\langle 7,4\rangle$

CORRECT

$\langle -7,4\rangle$

0

Explanation

Use $\langle x_2-x_1,,y_2-y_1\rangle$: $\langle 3-(-4),,-2-(-6)\rangle=\langle 7,4\rangle$.