Expressions and Equations: Using Properties of Integer Exponents (CCSS.8.EE.1)

Common Core 8th Grade Math · Learn by Concept

Help Questions

Common Core 8th Grade Math › Expressions and Equations: Using Properties of Integer Exponents (CCSS.8.EE.1)

1 - 10
1

Which expression is equivalent to $3^2 \times 3^{-5}$?

$3^{-3}$

CORRECT

$3^{7}$

0

$3^{3}$

0

$3^{-10}$

0

Explanation

Use the product of powers: add exponents with the same base. $2 + (-5) = -3$, so $3^2 \times 3^{-5} = 3^{-3}$. $3^{7}$ incorrectly adds $2+5$. $3^{3}$ drops the negative sign or subtracts in the wrong order. $3^{-10}$ multiplies exponents instead of adding.

2

Which expression is equivalent to $\frac{5^6}{5^2}$?

$5^{12}$

0

$5^{8}$

0

$5^{4}$

CORRECT

$5^{-4}$

0

Explanation

Use the quotient of powers: subtract exponents with the same base. $6-2=4$, so $\frac{5^6}{5^2}=5^4$. $5^{12}$ multiplies exponents. $5^{8}$ adds exponents. $5^{-4}$ subtracts in the wrong order ($2-6$).

3

Which expression is equivalent to $(x^3)^2 \cdot x^{-4}$?

$x$

0

$x^{2}$

CORRECT

$x^{5}$

0

$x^{-2}$

0

Explanation

First apply power of a power: $(x^3)^2 = x^{3\cdot 2}=x^6$. Then use the product rule: $x^6 \cdot x^{-4} = x^{6+(-4)}=x^2$. $x$ treats $(x^3)^2$ as $x^{3+2}=x^5$ then $5+(-4)=1$. $x^{5}$ ignores the $x^{-4}$ factor. $x^{-2}$ subtracts in the wrong order ($-4-6$).

4

Which expression is equivalent to $\frac{x^5 y^{-2}}{x^{-1} y^3}$?

$x^{4} y^{-5}$

0

$x^{4} y^{5}$

0

$x^{-6} y^{5}$

0

$\frac{x^{6}}{y^{5}}$

CORRECT

Explanation

Subtract exponents for each base: $x^{5-(-1)}=x^{6}$ and $y^{-2-3}=y^{-5}$, so the result is $x^6 y^{-5}=\frac{x^6}{y^5}$. $x^{4} y^{-5}$ subtracts $x$ exponents incorrectly ($5-1$ instead of $5-(-1)$). $x^{4} y^{5}$ also drops the negative on $y$. $x^{-6} y^{5}$ flips signs as if swapping numerator and denominator.

5

Which expression is equivalent to $2^3 \times 2^4$?

$2^{12}$

0

$2^7$

CORRECT

$2^{-1}$

0

$2^3$

0

Explanation

Use the product of powers rule: $a^m\cdot a^n=a^{m+n}$. So $2^3\times 2^4=2^{3+4}=2^7$. A multiplies exponents ($3\times 4$) instead of adding. C subtracts exponents as if dividing ($3-4$). D ignores the $2^4$ factor.

6

Which expression is equivalent to $\dfrac{3^5}{3^2}$?

$3^{10}$

0

$3^7$

0

$3^{-3}$

0

$3^3$

CORRECT

Explanation

Use the quotient of powers rule: $\dfrac{a^m}{a^n}=a^{m-n}$. So $\dfrac{3^5}{3^2}=3^{5-2}=3^3$. A multiplies exponents ($5\times 2$). B adds exponents instead of subtracting. C subtracts in the wrong order ($2-5$), giving a negative exponent.

7

Which expression is equivalent to $(x^3)^2$?

$x^6$

CORRECT

$x^5$

0

$x^3$

0

$x^9$

0

Explanation

Use the power of a power rule: $(a^m)^n=a^{mn}$. Thus $(x^3)^2=x^{3\cdot 2}=x^6$. B adds exponents ($3+2$). C ignores the outer exponent. D treats it as $x^{3^2}=x^9$, which is not the rule for a power of a power.

8

Which expression is equivalent to $10^{-3} \times 10^{2}$?

$10^{-5}$

0

$10^{5}$

0

$10^{-1}$

CORRECT

$10^{-6}$

0

Explanation

Use the product of powers rule: add exponents. $-3+2=-1$, so $10^{-3}\times 10^{2}=10^{-1}$. A subtracts exponents as if dividing. B ignores the negative sign and adds absolute values. D multiplies the exponents ($-3\times 2$) instead of adding.

9

Which expression is equivalent to $2^4 \cdot 2^{-7}$?

$2^{-3}$

CORRECT

$2^{11}$

0

$2^{3}$

0

$2^{-28}$

0

Explanation

Use the product rule: $a^m\cdot a^n=a^{m+n}$. Here, $2^4\cdot 2^{-7}=2^{4+(-7)}=2^{-3}$. Choice B adds magnitudes or subtracts in the wrong way to get $11$. Choice C drops the negative sign. Choice D multiplies the exponents ($4\times -7$), which is not a valid rule.

10

Which expression is equivalent to $\dfrac{x^5}{x^2}$ for $x\neq 0$?

$x^{10}$

0

$x^{3}$

CORRECT

$x^{7}$

0

$x^{-3}$

0

Explanation

Use the quotient rule: $\dfrac{a^m}{a^n}=a^{m-n}$. So $\dfrac{x^5}{x^2}=x^{5-2}=x^3$. Choice A multiplies exponents. Choice C adds exponents instead of subtracting. Choice D subtracts in the wrong order ($2-5$).