Carbohydrate Metabolism - Biochemistry
Card 0 of 848
Energy is during glycolysis.
Energy is during glycolysis.
The first and third steps of glycolysis involve energy consumption in the form of ATP. A phosphate group is added to glucose, and fructose-6-phosphate. In the seventh and tenth steps of glycolysis, ADP is phosphorylated at the level of the substrate into ATP. Since this is after glucose had been split into two three-carbon molecules, each molecule of glucose results in four ATP produced. However, since two were consumed early in glycolysis, the net ATP production is 2.
The first and third steps of glycolysis involve energy consumption in the form of ATP. A phosphate group is added to glucose, and fructose-6-phosphate. In the seventh and tenth steps of glycolysis, ADP is phosphorylated at the level of the substrate into ATP. Since this is after glucose had been split into two three-carbon molecules, each molecule of glucose results in four ATP produced. However, since two were consumed early in glycolysis, the net ATP production is 2.
Compare your answer with the correct one above
Which steps in glycolysis convert ATP to ADP?
Which steps in glycolysis convert ATP to ADP?
The first step of glycolysis is the addition of a phosphate group to glucose to form glucose-6-phosphate. The third step of glycolysis is the addition of another phosphate group to fructose-6-phosphate to form fructose-1,6-bisphosphate. The conversion of ATP to ADP is needed to supply the phosphate group in both of these reactions. These are the only two reactions in glycolysis where ATP is used to to add phosphate groups.
The first step of glycolysis is the addition of a phosphate group to glucose to form glucose-6-phosphate. The third step of glycolysis is the addition of another phosphate group to fructose-6-phosphate to form fructose-1,6-bisphosphate. The conversion of ATP to ADP is needed to supply the phosphate group in both of these reactions. These are the only two reactions in glycolysis where ATP is used to to add phosphate groups.
Compare your answer with the correct one above
What is the net ATP yield of glycolysis?
What is the net ATP yield of glycolysis?
Glycolysis produces 4 ATP molecules. However, 2 ATP molecules are required to initiate glycolysis. Subtracting these two numbers gives the net ATP yield from glycolysis--2 ATP molecules.
Glycolysis produces 4 ATP molecules. However, 2 ATP molecules are required to initiate glycolysis. Subtracting these two numbers gives the net ATP yield from glycolysis--2 ATP molecules.
Compare your answer with the correct one above
Why might glycolysis not proceed for an organism even when it is given glucose,
,
, and water?
Why might glycolysis not proceed for an organism even when it is given glucose, ,
, and water?
Although glycolysis will ultimately produce 4 ATP, there is an initial requirement of 2 ATP for it to begin. The conversion of glucose to glucose-6-phosphate and the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate both require ATP.
Although glycolysis will ultimately produce 4 ATP, there is an initial requirement of 2 ATP for it to begin. The conversion of glucose to glucose-6-phosphate and the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate both require ATP.
Compare your answer with the correct one above
Multiple studies have shown that drinking lots of alcohol can lead to an increase in body fat.
From a biochemical perspective, what aspect of alcohol metabolism may suggest that it contributes to an increase in body fat?
Multiple studies have shown that drinking lots of alcohol can lead to an increase in body fat.
From a biochemical perspective, what aspect of alcohol metabolism may suggest that it contributes to an increase in body fat?
Fats are broken down into acetyl-CoA to be used for energy. However, large quantities of alcohol will produce large quantities of acetyl-CoA when metabolized. Acetyl-CoA can be converted into fatty acids when it is in excess. Then fatty acids can assemble into triglycerides and be stored as fat.
Fats are broken down into acetyl-CoA to be used for energy. However, large quantities of alcohol will produce large quantities of acetyl-CoA when metabolized. Acetyl-CoA can be converted into fatty acids when it is in excess. Then fatty acids can assemble into triglycerides and be stored as fat.
Compare your answer with the correct one above
Which reaction of the Krebs cycle is carried out at the electron transport chain?
Which reaction of the Krebs cycle is carried out at the electron transport chain?
The conversion of succinate to fumarate is the only reaction that occurs outside of the normal Krebs cycle. Complex II of the electron transport chain has an enzyme known as succinate dehydrogenase. This enzyme is responsible for the conversion of succinate to fumarate. Fumarate is return to the cycle where it is then oxidized to malate continuing the cycle. Each of the other reactions of the Krebs cycle listed all occur in the inner mitochondrial matrix; whereas the conversion of succinate to fumarate occurs at the inner mitochondrial membrane.
The conversion of succinate to fumarate is the only reaction that occurs outside of the normal Krebs cycle. Complex II of the electron transport chain has an enzyme known as succinate dehydrogenase. This enzyme is responsible for the conversion of succinate to fumarate. Fumarate is return to the cycle where it is then oxidized to malate continuing the cycle. Each of the other reactions of the Krebs cycle listed all occur in the inner mitochondrial matrix; whereas the conversion of succinate to fumarate occurs at the inner mitochondrial membrane.
Compare your answer with the correct one above
What is the major product of the first committed step of glycolysis?
What is the major product of the first committed step of glycolysis?
First, we must realize that the first committed step is the first irreversible reaction of glycolysis that is unique to glycolysis (cannot lead to another process, such as the pentose phosphate pathway). This is the third step, in which fructose-6-phosphate is converted to fructose-1,6-bisphosphate (the correct answer).
Glucose is the beginning reactant of glycolysis, and pyruvate is the final product. Glucose-6-phosphate is the product of the first step of glycolysis overall, but not of the committed step.
First, we must realize that the first committed step is the first irreversible reaction of glycolysis that is unique to glycolysis (cannot lead to another process, such as the pentose phosphate pathway). This is the third step, in which fructose-6-phosphate is converted to fructose-1,6-bisphosphate (the correct answer).
Glucose is the beginning reactant of glycolysis, and pyruvate is the final product. Glucose-6-phosphate is the product of the first step of glycolysis overall, but not of the committed step.
Compare your answer with the correct one above
In glycolysis, which of these reactions produce adenosine triphosphate (ATP)?
I. Conversion of 1,3-bisphosphoglycerate to 3-phosphoglycerate
II. Conversion of phosphoenolpyruvate to pyruvate
IV. Conversion of 2-phosphoglycerate to phosphoenolpyruvate.
In glycolysis, which of these reactions produce adenosine triphosphate (ATP)?
I. Conversion of 1,3-bisphosphoglycerate to 3-phosphoglycerate
II. Conversion of phosphoenolpyruvate to pyruvate
IV. Conversion of 2-phosphoglycerate to phosphoenolpyruvate.
Conversion of 1,3-bisphosphoglycerate to 3-phosphoglycerate is mediated by phosphoglycerate kinase. Conversion of phosphoenolpyruvate to pyruvate is mediated by pyruvate. In both these reactions adenosine diphosphate (ADP) is converted to ATP via substrate level phosphorylation. Conversion of 2-phosphoglycerate to phosphoenolpyruvate, mediated by enolase, does not produce ATP.
Conversion of 1,3-bisphosphoglycerate to 3-phosphoglycerate is mediated by phosphoglycerate kinase. Conversion of phosphoenolpyruvate to pyruvate is mediated by pyruvate. In both these reactions adenosine diphosphate (ADP) is converted to ATP via substrate level phosphorylation. Conversion of 2-phosphoglycerate to phosphoenolpyruvate, mediated by enolase, does not produce ATP.
Compare your answer with the correct one above
Which of the following is not an intermediate of glycolysis?
Which of the following is not an intermediate of glycolysis?
As glucose is introduced into the glycolytic pathway, it is first phosphorylated to create glucose-6-phosphate. That will then be converted to fructose-6-phosphate via phosphoglucose isomerase. That product will then be phosphorylated once more via phosphofructokinase-1 to create fructose-1,6-bisphosphate. Glucose-1,6-bisphosphate is never an observed intermediate in glycolysis.
As glucose is introduced into the glycolytic pathway, it is first phosphorylated to create glucose-6-phosphate. That will then be converted to fructose-6-phosphate via phosphoglucose isomerase. That product will then be phosphorylated once more via phosphofructokinase-1 to create fructose-1,6-bisphosphate. Glucose-1,6-bisphosphate is never an observed intermediate in glycolysis.
Compare your answer with the correct one above
During the energy investment phase of glycolysis, how many ATP are required to continue with the reactions per glucose molecule?
During the energy investment phase of glycolysis, how many ATP are required to continue with the reactions per glucose molecule?
The first and third steps of glycolysis are both energetically unfavorable. This means they will require an input of energy in order to continue forward. Per glucose molecule, 1 ATP is required for each of these steps. Therefore, a total of 2 ATP is needed during the energy investment phase of glycolysis.
The first and third steps of glycolysis are both energetically unfavorable. This means they will require an input of energy in order to continue forward. Per glucose molecule, 1 ATP is required for each of these steps. Therefore, a total of 2 ATP is needed during the energy investment phase of glycolysis.
Compare your answer with the correct one above
Which of the following is characteristic of hexokinase (as opposed to glucokinase)?
Which of the following is characteristic of hexokinase (as opposed to glucokinase)?
Hexokinase and glucokinase are two enzymes that serve similar roles but have different characteristics. Hexokinase is found in all tissues, is inhibited by glucose 6 phosphate, and is not induced by insulin. It has a physiologic role of providing cells with a basal level of glucose 6 phosphate necessary for energy production.
Hexokinase and glucokinase are two enzymes that serve similar roles but have different characteristics. Hexokinase is found in all tissues, is inhibited by glucose 6 phosphate, and is not induced by insulin. It has a physiologic role of providing cells with a basal level of glucose 6 phosphate necessary for energy production.
Compare your answer with the correct one above
Which of the following are uncouplers of the electron transport chain?
I. Carbon monoxide
II. 2,4-Dinitrophenol
III. Nitric oxide
IV. Aspirin
Which of the following are uncouplers of the electron transport chain?
I. Carbon monoxide
II. 2,4-Dinitrophenol
III. Nitric oxide
IV. Aspirin
Uncouplers of the electron transport chain decrease the proton gradient and thus decrease ATP synthesis. Most energy from the electron transport chain is released as heat. The most common uncouplers are 2,4-dinitrophenol and aspirin, as well as thermogenin. Carbon monoxide is an inhibitor of the electron transport chain, not an uncoupler. Nitric oxide does not affect directly the electron transport chain.
Uncouplers of the electron transport chain decrease the proton gradient and thus decrease ATP synthesis. Most energy from the electron transport chain is released as heat. The most common uncouplers are 2,4-dinitrophenol and aspirin, as well as thermogenin. Carbon monoxide is an inhibitor of the electron transport chain, not an uncoupler. Nitric oxide does not affect directly the electron transport chain.
Compare your answer with the correct one above
While glycolysis results in the production of 4 ATP molecules, 2 must be used in the process. This results in a net production of only 2 ATP molecules per glucose.
What is the purpose of the 2 ATP molecules used in glycolysis?
While glycolysis results in the production of 4 ATP molecules, 2 must be used in the process. This results in a net production of only 2 ATP molecules per glucose.
What is the purpose of the 2 ATP molecules used in glycolysis?
In the glycolytic pathway, 2 molecules of ATP must be used. The purpose of these molecules is to phosphorylate 2 intermediates in the pathway:
1. Glucose must be phosphorylated to glucose-6-phosphate.
2. Fructose-6-phosphate must be phosphorylated to fructose-1,6-bisphosphate.
In the glycolytic pathway, 2 molecules of ATP must be used. The purpose of these molecules is to phosphorylate 2 intermediates in the pathway:
1. Glucose must be phosphorylated to glucose-6-phosphate.
2. Fructose-6-phosphate must be phosphorylated to fructose-1,6-bisphosphate.
Compare your answer with the correct one above
Which of these enzymes catalyzes the first reaction in glycolysis?
Which of these enzymes catalyzes the first reaction in glycolysis?
The first step in glycolysis is the conversion of glucose to glucose-6-phosphate through the consumption on one ATP molecule. Glucose is reacted upon by the enzyme hexokinase to carry out this step. Kinases are a group of enzymes that add phosphate groups by removing them from an ATP. All of these other enzymes catalyze subsequent reactions in glycolysis.
The first step in glycolysis is the conversion of glucose to glucose-6-phosphate through the consumption on one ATP molecule. Glucose is reacted upon by the enzyme hexokinase to carry out this step. Kinases are a group of enzymes that add phosphate groups by removing them from an ATP. All of these other enzymes catalyze subsequent reactions in glycolysis.
Compare your answer with the correct one above
Which of the following enzymes carries out a redox reaction in glycolysis?
Which of the following enzymes carries out a redox reaction in glycolysis?
Glyceraldehyde 3-phosphate dehydrogenase is the only enzyme in glycolysis that carries out a redox reaction. Glyceraldehyde 3-phosphate is oxidized to 1,3-bisphosphoglycerate while
is reduced to
.
Glyceraldehyde 3-phosphate dehydrogenase is the only enzyme in glycolysis that carries out a redox reaction. Glyceraldehyde 3-phosphate is oxidized to 1,3-bisphosphoglycerate while is reduced to
.
Compare your answer with the correct one above
Reactive oxygen species are by-products of the electron transport chain. Which of the following are considered reactive oxygen species?
Reactive oxygen species are by-products of the electron transport chain. Which of the following are considered reactive oxygen species?
Reactive oxygen species are superoxide, hydrogen peroxide, and hydrogen radicals. They are degraded by catalase, superoxide dismutase, and glutathione peroxidase. Neutrophils use reactive oxygen species to kill bacteria during the phagocytic oxidative burst.
Reactive oxygen species are superoxide, hydrogen peroxide, and hydrogen radicals. They are degraded by catalase, superoxide dismutase, and glutathione peroxidase. Neutrophils use reactive oxygen species to kill bacteria during the phagocytic oxidative burst.
Compare your answer with the correct one above
Which of the following choices is responsible for the decarboxylation in the pyruvate dehydrogenase complex?
Which of the following choices is responsible for the decarboxylation in the pyruvate dehydrogenase complex?
The pyruvate dehydrogenase complex essentially carries out a two part reaction: a decarboxylation and an oxidation. All these choices play important roles in the pyruvate dehydrogenase complex. Thiamine pyrophosphate (TPP) is the only choice, however, that is responsible for the decarboxylation step. Lipoamide acts as transporter, transferring the substrate to a distant active site. FAD then reoxidizes lipoamide for the next substrate. CoA is important in producing the substrate.
The pyruvate dehydrogenase complex essentially carries out a two part reaction: a decarboxylation and an oxidation. All these choices play important roles in the pyruvate dehydrogenase complex. Thiamine pyrophosphate (TPP) is the only choice, however, that is responsible for the decarboxylation step. Lipoamide acts as transporter, transferring the substrate to a distant active site. FAD then reoxidizes lipoamide for the next substrate. CoA is important in producing the substrate.
Compare your answer with the correct one above
Which enzyme in glycolysis is responsible for the cleavage of a six-carbon molecule into two separate three-carbon molecules?
Which enzyme in glycolysis is responsible for the cleavage of a six-carbon molecule into two separate three-carbon molecules?
In the fourth step of glycolysis, the six-carbon molecule fructose-1,6-bisphosphate is cleaved into two separate three-carbon molecules: dihydroxyacetone phosphate and glyceraldehyde-3-phosphate. This is catalyzed by the enzyme, aldolase.
In the fourth step of glycolysis, the six-carbon molecule fructose-1,6-bisphosphate is cleaved into two separate three-carbon molecules: dihydroxyacetone phosphate and glyceraldehyde-3-phosphate. This is catalyzed by the enzyme, aldolase.
Compare your answer with the correct one above
Which of the following processes occurs in the cytoplasm of a cell?
Which of the following processes occurs in the cytoplasm of a cell?
Glycolysis is the only of the above choices that occurs in the cytoplasm. The remaining occur in different parts of the mitochondria. The Krebs cycle occurs in the mitochondrial matrix. Both oxidative phosphorylation and the electron transport chain occur along the inner mitochondrial membrane.
Glycolysis is the only of the above choices that occurs in the cytoplasm. The remaining occur in different parts of the mitochondria. The Krebs cycle occurs in the mitochondrial matrix. Both oxidative phosphorylation and the electron transport chain occur along the inner mitochondrial membrane.
Compare your answer with the correct one above
What is an electron acceptor in oxidative phosporylation?
What is an electron acceptor in oxidative phosporylation?
Oxygen is an electron acceptor. In the absence of oxygen (hypoxia) cells cannot generate ATP in the mitochondria. Instead, they will utilize glycolysis. Oxygen is required to carry out the electron transport chain and produce ATP via oxidative phosphorylation.
Oxygen is an electron acceptor. In the absence of oxygen (hypoxia) cells cannot generate ATP in the mitochondria. Instead, they will utilize glycolysis. Oxygen is required to carry out the electron transport chain and produce ATP via oxidative phosphorylation.
Compare your answer with the correct one above